

Sealark Road, Callala Bay NSW Lot 5 DP 1225356 Report on Geotechnical Investigation La print

Prepared for: PRM Architects & Town Planners

Our Ref: TERRA19258.Rep1.Rev1

Prepared for: PRM Architects & Town Planners Mr P Mahedy Mail: P.O. Box 323, Gerringong NSW 2534

21 August 2019

Attention: Mr P Mahedy

RE: Sealark Road, Callala Bay NSW Lot 5 DP 1225356 Report on Geotechnical Investigation

Dear Patrick,

Please find enclosed our geotechnical investigation report in relation to the acid sulphate soil assessment conducted for the above Site. This report should be read in conjunction with the attached document 'About Your Report' in Appendix A. The results of these assessments are documented herein and indicate that the Net Acidity (%S) on the site is in the range of 0.06%S or lower. This is below the NSW EPA trigger level of 0.1% for the clayey soils encountered on the site, above which a formal management plan would be required. A formal ASS management plan is therefore not deemed required for the site.

Based on the investigations and outcomes detailed herein, the area of land identified for residential re-zoning, as per PRM's drawing (ref Appendix B) it not impacted by ASS at a level above which it would be deemed not suitable for residential use. Should you have any questions please contact the undersigned.

For and on behalf of Terra Insight

Karen Gates Principal Engineer/ Director CPEng MIEaust BEng MEngSc(Geot) MEnvMgt MBA

Contents

1		Introduction	. 1
2		Scope of work	. 1
3		Investigation Findings	. 1
	3.1	Site details	. 1
	3.2	Historical Aerial Imagery	. 1
	3.3	Geology	. 1
	3.4	ASS Maps	. 2
	3.5	Site Observations	. 2
	3.6	Subsurface conditions	. 2
	3.7	Laboratory Analysis	. 3
4		Engineering Assessment	. 5
	4.1	Acid Sulfate Soils	. 5
	4.2	Waste minimisation	. 5

Tables

Table 3.1: Summary of subsurface investigation	2
Table 3-2: Summary of ASS field screening laboratory results	4
Table 3-3: Summary of Chromium Suite laboratory test results	4

Figures

- Figure 1: Site Location and Geology
- Figure 2: Historical Aerial Images
- Figure 3: ASS Mapping of Site
- Figure 4: Site Plan and test locations

Appendices

Appendix A:	Your Report
Appendix B:	Proposed site development
Appendix C:	Site Images
Appendix D:	Engineering logs
Appendix E:	ASS Laboratory Results

1 Introduction

At the request of PRM Architects & Town Planners (the client), Terra Insight Pty Ltd (Terra) has carried out an acid sulphate soil (ASS) assessment of Sealark Road, Callala Bay NSW Lot 5 DP 1225356, hereafter referred to as the Property.

The site is proposed to be subdivided into thirteen (13) individual lots as depicted on the drawings provided in Appendix B. The residential lots will be located on the south-western part of the site with access from Monarch Place and a new road to be located off Sealark Road. As part of the development, a storm water detention pond is proposed to be constructed on the southern-eastern- of the Property. The remainder of the property is to remain undeveloped for environment conservation and to provide a fire asset protection zone.

The objective of the geotechnical investigation was to determine whether acid sulphate soil is present on the site within the area of the proposed subdivision and if present, their net acidity, liming rate, and the requirement for an Acid Management Plan (if applicable).

2 Scope of work

The scope of work for this assessment included the following:

- A review of geological maps and aerial photography covering the site;
- A review of acid sulphate mapping covering the site;
- A visit to site to make observations of site surface conditions by a Geotechnical Engineer;
- A subsurface investigation comprising:
 - Four boreholes (named BH01 and BH04) to 1.5m depth.
 - Sampling of the subsurface soils at 0.5m intervals; and
 - Logging of the materials encountered by a geotechnical engineer;
- Laboratory testing including ASS field screen testing of all samples collected from the site and an ASS Chromium suite test on a representative sample of the ASS material encountered on the site; and
- Provision of report providing the findings of the assessment and recommendations in accordance with the objectives outlined above.

3 Investigation Findings

3.1 Site details

Sealark Road, Callala Bay NSW Lot 5 DP 1225356, is located approximately 0.6 km north east of Callala Bay town centre as shown on Figure 1. The area of the property is approximately 6.3ha. The area of the proposed sub division (the site) is approximately 1 ha in area and located within the south-western corner of the Property (in an area hereafter referred to as the Site).

The Site is bounded by Sealark Road on the western boundary, Monarch Place on the southern boundary, Wowly Gully on the eastern boundary, and underdeveloped land to the north. The site has an elevation of about RL 4 to 5 m AHD adjacent to Sealark Road, falling to RL 3m AHD on the site's eastern boundary.

3.2 Historical Aerial Imagery

Historical aerial photography of the site (refer Figure 2) indicates that the site has subject to little changed between 2008 and 2018, other than minor vegetation management.

3.3 Geology

The 1:250,000 geology sheet for Wollongong indicates the site is underlain by Wandrawandian Siltstone of the Shoalhaven Group, consisting of siltstone, silty sandstone and pebbly in parts.

3.4 ASS Maps

The acid sulphate soil risk map accessed online via eSPADE v2.0 indicates the site has no known occurrences of ASS however, is within proximity of areas of known acid sulphate soil occurrence. The closest being the Wowly Gully Estuary with a high probability of acid sulphate soil occurrences in bottom sediments and in areas to the east of the creek at elevations of 1-2m AHD (eg at depths greater than 3m below the current ground surface level).

Terra has undertaken several ASS investigations in the area and has identified that some of the rock formations within the Wandrwandian Siltstone are acidic rocks with a low potential to generate acid.

3.5 Site Observations

Observations of the site were made at the time of the site inspection. Photographs taken of the general site conditions are provided in Appendix C. These indicate:

- The property is vacant and gently slopes to the south east, towards two small creeks/drainage depressions that combine on the property.
- Trees and bushes surrounded the creek.
- Stormwater from residential streets and properties likely feed the creek, then drains into an estuary along the southern boundary of the property.
- The property is predominantly grassed on the northern side of the creek, part of this grassed area is sandy, appearing to have formed from slope wash. Old tree stumps are present throughout this area.
- To the south of the creek most of the remaining area of the property is dense bushland with partly cleared areas towards the south eastern comer of the property.

3.6 Subsurface conditions

The subsurface investigation was undertaken on the 22nd of July and comprised the auguring of four test sites to a depth of 1.5m (BH01 to BH04) below the existing ground surface level within the western part of the site which is proposed for subdivision. A fifth surface sample was taken towards the centre north of the site (BH05). The test sites were named borehole BH01 to BH05. The location of each test site is shown on Figure 4. The subsurface conditions encountered in the boreholes are summarised on Table 3.1. Engineering logs are provided in Appendix D. The subsurface conditions encountered within the boreholes were generally consistent, comprised of a surficial layer of topsoil, under by around 0.5 to 0.7m of alluvial soil and then residual soil which graded into weathered rock at depths of around 1.5m

Table 3.1: Summary of subsurface investigation

Subsurface conditions		Dept	th encounte	red in test	site/exposure	e (m)
(Soil name, plasticity or particle characteristics, colour, secondary components and minor components)	Structure and other comments	BH01	BH02	BH03	BH04	BH05
Sandy SILT/Silty SAND: Low plasticity, pale brown, fine sand, trace of angular and sub rounded gravel, clayey in parts.	Topsoil	0.0-0.3	0.0-0.2	0.0-0.2	0.0-0.3	0.0-0.3
Silty CLAY: medium to high plasticity, orange brown with red mottling, trace of rootlets.	Alluvial	0.3-0.6	0.2-0.5	0.2-0.6	0.3-0.7	
Silty CLAY: medium to high plasticity, grey and red, with fine sand and trace of fine sub rounded gravel.	Residual	0.6-1.3	0.5-1.5*	0.6-1.3	0.7-1.2	
Sandy CLAY/Silty CLAY: medium to high plasticity, fine to medium sand, grey with red mottling, greyer with depth trace of fine to medium sub angular gravel. BH04 – Greyish white, with orange mottling.	Extremely weathered	1.3-1.5*		1.3-1.5*	1.2-1.5*	

Notes * - End of hole at target depth; r - Early refusal, NE - not encountered

A groundwater table was not encountered during the investigation. However, the soils were observed to be in moist and moist to wet condition in parts.

3.7 Laboratory Analysis

Acid sulfate soils (ASS) are grouped into two types, viz:

- Actual (Active) Acid Sulfate Soils (AASS) where the soils are oxidising, and acid is already being produced. These soils are typically identified because the pH of the soil when mixed with water is low (e.g. pHf < 4);
- Potential (Passive) Acid Sulfate Soils (PASS) where there is the potential for acid to be generated but the soil is not yet exposed to oxidizing conditions. In this case, a low pH is produced when the soil is mixed with an oxidizing solution resulting in a low pH (e.g. pH_{fox} < 3). Other indicators of PASS soils are a notable reaction when the oxidizing solution is applied and a pH_{fox} at least one unit lower than pH_f.

A summary of the results of acid sulfate soil field screening tests undertaken on samples of soil retrieved from each of the test sites as summarised in **Table 3-2** on the following page and provided in Appendix E.

The ASS field screening shows the natural pH of the soils is typically lower than 5 but above 4, indicating the soils are slightly acidic but not indicative that AASS are present in the near surface soils in the proposed location of the subdivision.

Several samples showed a drop in pH greater than 1 during the testing with two samples (BH05 S1 at 0.5m depth and BH03 at 0.5m depth) also showing a strong reaction during the field testing. The pHfox results are all above 3 but below 4. This result is inclusive for the presence of PASS. However, given the elevation of the site, the shallow depth to weathered rock which may potentially be slightly acidic and nearby ASS mapping, these results are indicative of the following:

- The near surface soils are comprised of some humic (organic) material which results in a slight drop in the pH.
- Closer to the creek, the alluvial soils also show a higher drop in the pH, most likely associated with increased humic material and potentially sporadic and weak PASS deposited during historical flood events.
- acidity associated with underlying acid rock of the Wandrawandian Siltstone Formation.

Terra Insight has undertaken several investigation which including sampling and testing for acid sulfate soils in the Callala Bay area. Results of a Chromium Suite test undertaken on alluvial soils from Emmett Street with similar field screen test results are provided in Table 3.3. This result shows a net acid generating capacity of 0.06% for clayey soils on Emmett Street of 0.06%.

Sealark Road, Callala Bay NSW Lot 5 DP 1225356

Report on Geotechnical Investigation

Table 3-2: Summar	y of ASS f	field screening	laboratory results
-------------------	------------	-----------------	--------------------

	Sample			Reaction	٨nH	۵۵۵۵		PASS indi	cators	
Test Hole Number	Depth (m)	рН _(f)	pH _(fox) (X slight, XX Moderate, XXX strong, to XXXX extreme)		pH _(f) - pH _(Fox)	indicator (pH _f < 4) ^A	pHfox ^c <3	∆pH ^B (>1)	Strong or very strong reaction	Potential for ASS ^D
	S1 0.5	4.7	3.6	XX	1.1	X	X	~	X	LOW - Humic
BH01	S2 1.0	4.9	3.8	XX	1.1	X	X	~	X	LOW - Humic
	S3 1.5	4.9	4.0	XX	0.9	X	X	×	X	LOW
	S1 0.5	4.5	3.6	ХХ	0.9	X	X	X	X	LOW
BH02	S2 1.0	4.3	3.7	ХХ	0.6	X	X	X	X	LOW
	S3 1.5	4.3	3.6	XX	0.7	X	X	X	X	LOW
	S1 0.5	4.6	3.5	XXX	1.1	X	X	✓	 Image: A set of the set of the	MODERATE
BH03	S2 1.0	4.7	3.8	ХХ	0.9	X	X	X	X	LOW
	S3 1.5	4.8	3.9	ХХ	0.9	X	X	X	X	LOW
	S1 0.5	4.7	3.5	ХХ	1.2	X	X	~	X	LOW Humic
BH04	S2 1.0	4.5	3.4	ХХ	1.1	X	X	✓	X	LOW Humic
	S3 1.5	4.7	3.5	XX	1.2	X	X	✓	X	LOW-
BH05	S1 0.5	4.2	3.0	XXX	1.2	X	X	✓	✓	MODERATE

Notes to table: A) This indicator is not used on its own as soils with high organic content can contain humic acid or manganese oxides which also produce a reaction;

B) As the ΔpH increases, there is an increased probability that PASS is present.

C) The lower the pHfox the greater the potential for PASS to be present. Where pHfox < 3 and there is a strong reaction and high ΔpH , there is a high probability that PASS is present. Where the pHfox < 4 the result is less positive and further laboratory testing is required to determine the source of acid generation. Where pHfox < 5 the test is inconclusive, sulfides may be present either in small quantities or may be poorly reactive under quick field test conditions or the sample may contain carbonate which neutralises some or all acid production by oxidation. Equally the low value may be due to weak organic acids and there may be no sulfides present. Further testing to identify the cause of acid generation is recommended.

D) Samples which meet all the QASSIT indicators for PASS are assigned a high potential. Samples which meet some of the indicators for PASS are assigned a moderate potential. Samples which show an inconclusive result are assigned a low potential. It is noted that it is possible for some 'non-ASS soils' to generate acid and have all or some of the indicators of ASS. Further testing is required to assess the nature of acid generation.

Table 3-3: Summary of Chromium Suite laboratory test results

Test Location	Soil Type	Depth (m)	pH KCL	Actual Acidity ^A % S-TAA	Potential Acidity (% Sr)	Retained Acidity ^C (% S-S _{nas})	- Acid Neutralising Capacity ANCB (% S) ^B	Net Acidity (%S)	Fineness Factor	Liming Rate excluding ANC (kg/t)
LOR				0.02	0.005	0.02	0.02	0.02		
Emmett Street1	Sandy Clay	0.5	4.9	0.04	0.026	NA	NA	0.06	1.5	3

Notes to table: LOR – level of reporting. NA – not applicable. A) only required where pHkci is < 5.5, B) only required where pHkci is >6.5 C) only required where pHkci is >6.5 C)

4 Engineering Assessment

4.1 Acid Sulfate Soils

The treatment of ASS is typically required where the level of Net Acidity (% S) is greater than the following:

- Sands and loamy (clayey) sands: 0.03%.
 Sandy Loams (Sandy Clays) and light clays 0.06%
- Medium to heavy Clays 0.1%

The Chromium Suite ASS testing indicates Net Acidity (%S) on the site is in the range of 0.06%S. This is below the NSW EPA trigger level of 0.1% for the clayey soils encountered on the site, above which a formal management plan would be required. A formal ASS management plan is therefore not deemed required for the site.

However, the site is in an area with a low and sporadic potential for ASS to be present in the near surface alluvial surface soils and is potentially underlain by residual and alluvial soils derived from underlying acidic rock associated with the Wandrawandian Siltstone. If the site is underlain by acidic rock, it is likely that the environment has become accustomed to a slightly reduced pH. Any in situ treatment of soils on the site will need to be targeted to ensure that only the potential for excess acidity is managed and that any treatment implemented on the site does not result in an alkaline environment. In situ passive treatment would be best suited to the site. Consequently, the following should be implemented on the site:

- To facilitate off-site disposal, all material for offsite disposal should be treated at a rate of 3kg/tonne, with the lime mixed well into the spoil. For small volumes of spoil and for ease of treatment and disposal, spoil can be contained and treated within skip bins. Verification testing should be undertaken to confirm the acid generating capacity of the spoil has been adequately neutralised prior to off-site disposal.
- If the soils are to be stockpiled on site for a period exceeding 2 weeks, further advice shall be sort from a competent ASS professional. Stockpiles shall be observed for obvious signs of oxidation, such as jarosite staining (an example is shown in image 1). Advice should be sort from an environmental professional if such staining or signs of oxidation are observed;

Image 1: Example of Jarosite staining

- Excavated soil that is to remain on the site shall be treated at a rate of 2kg/tonne.
- Materials excavated for service trenches etc, should be replaced within 48 hours.
- The sides and bases of excavations should be treated with lime (sprinkled across the exposed faces). In the case of the sedimentation basin, the sides should be lined with clay soils with a neutral pH or alternatively, they could be lined with a layer of crushed concrete.

4.2 Waste minimisation

Waste materials will be generated because of site earthworks. To minimise the costs associated with construction (including off-site disposal of excavated materials), it is preferable to minimise the disturbance of the in-situ soils and/or re-use these materials where possible. Footings which minimise the need for deep excavations, such as screw piers, are best suited to the site.

Figures

Wollongong 1:250,000 geological map

Site Geology

Symbol	Group	Sub-group	Unit	Lithology
Qal	-	-	-	Alluvium, gravel, sand, silt and clay
Psw	Shoalhaven	Undifferented	Wandrawandian Siltstone	Siltstone, silty sandstone, pebbly in
	Group			parts

Site Location

	description	drawn	approved	date			
uc	Site location	HJP	KEG	17/08/2019		TERRA INSIGHT	
evisio							
<u> </u>					scale	NTS	
					original size	A3	

2		
	URRARONG BOAD	SITE
4		RED POINT
		HARE BAY
OINT		
n		
client:	PRM Architects	& Town Planners
project:	Geotechnical No. 5 Sea Callala E	Investigation Iark Road 3ay NSW
title:	Site Lo	ocation
project no:	TERRA19258	figure no: FIGURE 1

Historical Imagery

description	drawn	approved	date		
Aerial images	HJP	KEG	25/07/2019		TERRA INSIGHT
				scale	NTS
				original size	A3

client:	PRM Architects & Town Planners						
project:	Geotechnical Investigation No. 5 Sealark Road Callala Bay NSW						
title:	Historical Imagery						
project no: TE	ERRA19258	figure no: FIGURE 2					

ASS Mapping (eSPADE v2.0)

	description	drawn	approved	date		client:	PRM Architects	& Town Plan
A	Aerial images	HJP	KEG	25/07/2019	TERRA INSIGHT	project:	Geotechnica No. 5 Se Callala	al Investigation alark Road Bay NSW
					NTS	title:	ASS Map	oing Excerpt
					A3	project no: TE	ERRA19258	figure no: FI

	Landform		Elevation#			
b	Backplain	t	Levee toe	0 0-1 m		
k	Backswamp	0	Ox-bow	1 1-2 m		
m	Bottom sediments	p	Plain	4		
n	Channel	a	Sandplain	Additional Descriptive		
d	Dune	s	Swamp	(p) Pleistocene		
r	Interbarrier swamp	y	Splay	(s) Acidic scald		
İ	Intertidal flat	u	Supratidal flat	1		
g	Lagoon	w	Swale			
Ē	Levee	C	Tidal creek			

*Elevation levels given on the map refer to the elevation of the ground surface at the time of mapping. Depending on the nature of the disturbance, these elevation levels may or may not represent the original ground surface elevation.

*Approximate AHD

<u>Legend</u>

N ▲

Test Site Locations

	description	drawn	approved	date
n	Aerial images	HJP	KEG	25/07/2019
ובעואר				

Appendix A: Your Report

These notes have been prepared to help you understand the advice provided in Your Report and its limitations.

Your Report is based on what you tell us

Your Report has been developed based on the information you have provided such as the scope and size of your project. It applies only to the site investigated. If there are changes to the proposed works, then the advice provided within Your Report may need to be reviewed

Your Report is written with your needs in mind

The advice provided within Your Report is also not relevant to another purpose other than that originally specified at the time the report was issued. Please seek advice from Terra Insight before you share Your Report with another third party – except for the purpose for which the report was written.

Terra Insight assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in Your Report.

Your Report is based on what we observed

The advice provided within Your Report assumes that the site conditions, revealed through selective point sampling (undertaken in accordance with normal practices and standards) at a particular point in time, are indicative of the actual conditions on your site. However, the nature of the materials underlying your site is affected by natural processes and the activity of man. Under no circumstances can it be considered that these findings represent the actual state at all points. The subsurface conditions may vary significantly on the other parts of the site, particularly where no nearby sampling and testing work has been carried out.

As a result conditions on your site can change with time; they can also vary spatially. As a result, the actual conditions encountered may differ from those detailed within Your Report. Although nothing can be done to change the actual site conditions which exist, steps can be taken to gain a better understanding of the subsurface conditions underlying your site and reduce the potential for unexpected conditions to be encountered

The advice within Your Report also relies on interpretation of factual information based on judgement and opinion and has a level of uncertainty attached to it. Only Terra Insight is fully familiar with the background information needed to assess whether or not the report's recommendations are valid and whether or not changes should be considered as the project develops. If the details of your project have changed, the site conditions have changed or a significant amount of time as elapsed since our report was written, the advice provided within Your Report may need to be reviewed.

Your Report has been written by a Professional

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

Your Report is better when it is kept together

Your Report presents all the findings of the site assessment and should not be copied in part or altered in any way. Keeping Your Report intact reduces the potential for yourself or other design professionals to misinterpret the report.

Your Geo-Environmental Report

If Your Report is for geotechnical purposes only, it will not relate any findings, conclusions, or recommendations about the potential for hazardous materials to exist at the site unless you have specifically asked us to do so. If your report is written for Geo-Environmental purposes the following should be noted in addition to the above:

- Advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this
 report. Consequently, the currency of conclusions and recommendations in Your Report should be verified if you propose to use this report more than
 6 months after its date of issue;
- Your Report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. The assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, which includes budget and timing;
- The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice. Any
 interpretation in Your Report is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and
 temporal patterns of contaminant presence and impact in the natural environment.
- We may have relied on data and other information provided by you and other qualified individuals in preparing Your Report. We have not verified the accuracy or completeness of such data or information except as otherwise stated in Your Report. For these reasons Your Report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.
- For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is
 to identify, and if possible quantify, risks that both recognised and potential contamination posed in the context of the agreed purpose. If the proposed
 use of the site changes, the assessment may no longer be valid and will need to be reviewed.

* For further information on this aspect reference should be made to "Guidelines for the Provision of Geotechnical information in Construction Contracts" published by the Institution of Engineers Australia, National headquarters, Canberra, 1987.

Appendix B: Proposed site development

Appendix C: Site Images

Photograph 1: View of northern portion of the site looking south-west towards Sealark Road from proposed lot 9

Photograph 2: View of northern portion of site looking east from around lot 9. Creek is located along and east of tree line.

Photograph 3: View of northern portion of site, looking west towards Sealark Road from around Lot 9.

	description	drawn	approved	date
revision	Plate1	HJP	KEG	16/08/2019

Photograph 4: View of northern portion of site, looking north-west towards Sealark Road from round lot 9.

		client:	PRM Architects 8	& Town Planners
<	TERRA INSIGHT	project:	Geotechnical No. 5 Sea Callala E	Investigation Iark Road Bay NSW
scale	NTS	Title	Images o	f the site
original size	A3	project no: TE	ERRA19258	Plate no: 1

Photograph 5: View of northern portion of site, looking north from around lot 9

Photograph 6: View of south-western portion of the site, looking north towards the creek from lot 13

Photograph 7: View of south-western part of the site, looking north west from lot 13. A creek is visible amongst the bushes towards the centre of the image.

	description	drawn	approved	date
c	Plate2	XJ	KEG	16/08/2019
visio				
ē				

Photograph 8: View of south-western portion of site looking north

towards the creek

<	TERRA INSIGHT	cli pr
scale	NTS	· ·
original size	A3	pr

lient: PRM Architects & Town Planners roject: Geotechnical Investigation No. 5 Sealark Road Callala Bay NSW Images of the site Title roject no: TERRA19258 Plate no:2

Photograph 9: South-western portion of the site, looking north east.

Photograph 10: South-western portion of the Site looking south east towards the detention basin.

Photograph 11: South-western portion of the site south from lot 13 towards Monarch Place.

	description	drawn	approved	date
и	Plate3	XJ	KEG	16/08/2019
visio				
re				

Photograph 12: South-western portion of the site, looking south-west towards Monarch Place.

lient: PRM A	PRM Architects & Town Planners		
roject: Geo	Geotechnical Investigation No. 5 Sealark Road Callala Bay NSW		
Title	Images o	f the site	
roject no: TERRA19258		Plate no: 3	

Photograph 12: Slight clearing to the north east of creek.

Photograph 14: View of site south-western part of the site looking west along Monarch Place.

	description	drawn	approved	date
revision	Plate4	XJ	KEG	16/08/2019

Photograph 13: Minor rubbish found on the surface, within the south-western corner of the site (plastic, glass bottles, tin cans).

Photograph 15: View of south-western corner of the looking east along Monarch Place.

<	TERRA INSIGHT	cli pr
scale	NTS	
original size	A3	pr

lient: PRM Arc	PRM Architects & Town Planners		
roject: Geot N	t: Geotechnical Investigation No. 5 Sealark Road Callala Bay NSW		
Title I	mages of the site		
roject no: TERRA19258	Plate no: 4		

Photograph 16: Residual to extremely weathered material encountered at 1.5m depth typically found in test locations across the site.

Photograph 17: Residual to extremely weathered material encountered at 1.5m depth typically found in test locations across the site.

description	drawn	approved	date		client: PRM Architect	s & Town Planners
Plate5	XJ	KEG	16/08/2019	TERRA INSIGHT project: Geotechnical Investiga No. 5 Sealark Road Callala Bay NSW		al Investigation ealark Road Bay NSW
				scale NTS	Title Images	of the site
				original size A3	project no: TERRA19258	Plate no: 5

Appendix D: Engineering logs

Page 1 of 4

FIELD DECRIPTIONS OF SOILS

		(Excluding particle	USC	PRIMARY NAME			
S	ction is	EAN VELS or no es)	Wide ran	ge in grain size and su	ubstantial amounts of all intermediate particle sizes	GW	GRAVEL
of materia mm	VELS coarse fra 1 2.36 mm	CLE GRA (Little fin	Predomir	nantly one size or a rai	nge of sizes with more intermediate sizes missing.	GP	GRAVEL
an 65% (In 0.075 I	GRA Ian half of larger thar	/ELS FINES ciable unt of es)	Non-plas	tic fines (for identificat	ion procedures see ML below)	GM	SILTY GRAVEL
S More th larger tha	More th	GRA WITH Appre amou fin	Plastic fir	nes (for identification p	procedures see CL below)	GC	CLAYEY GRAVEL
ED SOILS 3 mm is I	raction	AN 5 (Little fines)	Wide ran	ge in grain sizes and s	substantial amounts of all intermediate sizes	SW	SAND
GRAIINE ss than 6	NDS of coarse f nan 2.36 m	CLE SANDS or no	Predomir	Predominantly one size or a range of sizes with some intermediate sizes missing.			SAND
20ARSE le	SA than half (smaller th	s smaller t NDS ITH NE S eciable ount of nes)	Non-plas	Non-plastic fines (for identification procedures see ML below).			SILTY SAND
Ũ	More	SA W Appr amc	Plastic fir	Plastic fines (for identification procedures see CL below).			CLAYEY SAND
of material 75 mm			(1	IDENTIFICA Note a 75Um particle i	TION PROCEDURES ON FRACTIONS <0.2 mm s about the smallest particle that is visible to the naked	t eye.)	
35% n 0.0	(0)	DRY STRENG	GTH	DILATANCY	TOUGHNESS	USC	PRIMARY NAME
than er tha	CLAY: it less 50	None to Lov	N	Quick to slow	None	ML	SILT
Aore malle	TS & (uid lim than	Medium to Hi	gh	None	Medium	CL	CLAY
OILS N nm is sr	SILT	Low to mediu	um Slow to very slow		Low	CL	ORGANIC SILT
NED : n 63	ΥS 50	Low to mediu	Im	Slow to very slow	Low to medium	MH	SILT
GRAII ss tha	& CLA id limit	High		None	High	СН	CLAY
FINE (les	SILTS . Liqu greater	Medium to Hi	gh	None	Low to medium	ОН	ORGANIC CLAY
HIGHLY	ORGANIC	Readily identifie	d by colou	r, odour, spongy feel a	and frequently by fibrous texture by fibrous texture.	PT	PEAT

● Low plasticity – Liquid Limit w_L less than 35%. ● Medium plasticity – w_L between 35% and 50%. ● High plasticity – w_L greater than 50%.

Particle size descriptive terms

NAME	SUBDIVISION	SIZE
Boulders		>200 mm 63 mm to 200 mm
Cobbles		
Gravel	coarse medium fine	20 mm to 63 mm 6 mm to 20 mm 2.36 mm to 6 mm
Sand	coarse medium fine	600 μm to 2.36 mm 200 μm to 600 μm 75 μm to 200 μm

Minor components

TERM	ASSESSMENT GUIDE	PROPORTION OF MINOR COMPONENT IN:
Trace of	Presence just detectable by feel or eye, but soil properties little or no different to general properties of primary component.	Coarse grained soils: <5% Fine grained soils: <15%
With some	Presence easily detected by feel or eye, soil properties little different to general properties of primary component.	Coarse grained soils: 5 - 12% Fine grained soils: 15 - 30%

Moisture condition

TERM	DEFINITION
Dry	Looks and feels dry. Cohesive and cemented soils are hard, friable or powdery. Uncemented granular soils run freely through hands.
Moist	Soil feels cool and darkened in colour. Cohesive soils can be moulded. Granular soils tend to cohere.
Wet	As for moist but with free water forming on hands when handled.

Soil structure

	ZONING	CEMENTING			
Layers	Continuous across exposure or sample.	Weakly cemented	Easily broken up by hand in air or water.		
Lenses	Discontinuous shape.	Moderately cemented	Effort is required to break up the soil by hand in air or water.		
Pockets	Irregular inclusions of different material.				

Consistency of cohesive soils

TERM	UNDRAINED STRENGTH su (kPa)	VISUAL OBSERVATION IN FIELD
Very Soft	<12	A finger can be pushed well into the soil with little effort.
Soft	12 – 25	A finger can be pushed into the soil to about 25mm depth.
Firm	25 – 50	The soil can be indented about 5mm with the thumb, but not penetrated.
Stiff	50 – 100	The surface of the soil can be indented with the thumb, but not penetrated.
Very Stiff	100 – 200	The surface of the soil can be marked, but not indented with thumb pressure.
Hard	>200	The surface of the soil can be marked only with the thumbnail.
Friable	_	Crumbles or powders when scraped by thumbnail.

Density of granular soils

TERM	DENSITY INDEX (%)
Very loose	Less than 15
Loose	15 – 35
Medium Dense	35 – 65
Dense	65 – 85
Very Dense	Greater than 85

Geological origin

TRANSPORTED S	OILS	WEATHERED IN PLACE SOILS		
Fill	Man made deposit. Fill may be significantly more variable between tested locations than naturally occurring soils.	Extremely weathered material	Structure and fabric of parent rock visible.	
Aeolian soil	Deposited by wind.	Residual soil	Structure and fabric of parent rock not visible.	
Alluvial soil	Deposited by streams and rivers.			
Colluvial soil	Deposited on slopes (transported downslope by gravity).			
Lacustrine soil	Deposited by lakes.			
Marine soil	Deposited in ocean basins, bays, beaches and estuaries.			

FIELD DESCRIPTIONS OF ROCK

The descriptive terms used by Terra Insight are given below. They are broadly consistent with Australian Standard AS1726-1993.

Rock Substance In engineering terms rock substance is any naturally occurring aggregate of minerals and organic material which cannot be disintegrated or remoulded by hand in air or water. Other material is described using soil descriptive terms. Effectively homogenous material, may be isotropic or anisotropic.

Discontinuity or break in the continuity of a substance or substances.

Any body of material which is not effectively homogeneous. It can consist of two or more substances without defects, or one or more substances with one or more defects.

Classification of weathering products

Defect

Mass

Rock substance strength terms

Term	Abbreviation	Definition	Term	Abbreviation	UCS (MPa)	Point Load Index I _{s(50)} (MPa)	, Field Guide
Residual Soil	RS	Soil derived from the weathering rock; the mass structure and substance fabric are no longer evident; there is a large change volume but the soil has not been	Very Low	VL	<2	Less than 0.1	Material crumbles under firm blows with sharp end of pick; can be peeled with a knife; pieces up to 30mm thick can be broken by finger pressure.
Extremely Weathered Material	XW	Material is weathered to such ar extent that it has soil properties, it either disintegrates or can be remoulded in water. Original roc fabric still visible.	Low	L	2 to 6	0.1 to 0.3	Easily scored with a knife; indentations 1mm to 3mm show with firm bows of a pick point; has a dull sound under hammer. Pieces of core 150mm long by 50mm diameter may be broken by hand. Sharp edges of core may be friable and break during handling.
Highly Weathered Rock	HW	Rock strength is changed by weathering. The whole of the rc substance is discoloured, usuall iron staining or bleaching to the	Medium	Μ	6 to 20	0.3 to 1.0	Readily scored with a knife; a piece of core 150mm long by 50mm diameter can be broken by hand with difficulty.
		extent that the colour of the orig rock is not recognisable. Some minerals are decomposed to cla minerals. Porosity may be increa	High	Η	20 to 60	1 to 3	A piece of core 150mm long by 50mm can not be broken by hand but can be broken by a pick with a single firm blow; rock rings under hammer.
		by leaching or may be decrease due to the deposition of mineral: pores.	Very High	VH	60 to 200	3 to 10	Hand specimen breaks after more than one blow of a pick; rock rings under hammer.
Moderately Weathered Rock	MW	The whole of the rock substance discoloured, usually by iron stair or bleaching, to the extent that colour of the fresh rock is no lon recognisable	Extremely High Notes on I	EH Rock Substance	>200 • Strength:	More than 10	Specimen requires many blows with geological pick to break; rock rings under hammer.
Slightly Weathered Rock	SW	Rock substance affected by weathering to the extent that pai staining or partial discolouration the rock substance (usually by limonite) has taken place. The colour and texture of the fresh rc is recognisable: strength proper are essentially those of the fresh	In anisotrop anisotropy term "extre AS1726-19 engineering which fall a ratio may v strength ro	pic rocks the field High strength ar mely low" is not u 193, the field guid g terms. The unc cross the planar rary for different r cks.	I guide to stree hisotropic rock used as a roc le therein mal confined com anisotropy) is ock types. Lo	ength applies to the s ks may break readily k substance strength kes it clear that mate pressive strength for s typically 10 to 25 tin wer strength rocks of	trength perpendicular to the parallel to the planar anisotropy. The term. While the term is used in rials in that strength range are soils in isotropic rocks (and anisotropic rocks nes the point load index Is(50). The ften have lower ratios than higher

SUBSTANCE DESCRIPTIVE TERMS

ROCK NAME	Simple rock names are used rather than precise geological classification.
PARTICLE SIZE	Grain size terms for sandstone are:
Coarse grained	Mainly 0.6mm to 2mm
Medium grained	Mainly 0.2mm to 0.6mm
Fine grained	Mainly 0.06mm (just visible) to 0.2mm
FABRIC	Terms for layering of penetrative fabric (eg. bedding, cleavage etc.) are:
Massive	No layering or penetrative fabric.
Indistinct	Layering or fabric just visible. Little effect on properties.
Distinct	Layering or fabric is easily visible. Rock breaks more easily parallel to layering of fabric.

Notes on Weathering:

Fresh Rock

AS1726 suggests the term "Distinctly Weathered" (DW) to cover the range of substance weathering conditions between XW and SW. For projects where it is not practical to delineate between HW and MW or it is judged that there is no advantage in making such a distinction. DW may be used with the definition given in AS1726.

FR

rock substance.

weathering.

Rock substance unaffected by

Where physical and chemical changes were caused by hot gasses and liquids associated with igneous rocks, the term "altered" may be substituted for "weathering" to give the abbreviations XA, HA, MA, SA and DA.

Common defects observed in rock

Term	Definition	Diagram	Map Symbol	Graphic Log (Note 1)	DEF
Parting	A surface or crack across which the rock has little or no tensile strength. but which is not parallel or sub parallel to layering or planar anisotropy in the rock substance. May be open or closed.		20 Bedding 20 Cleavage	(Note 2)	Cur
Joint	A surface or crack across which the rock has little or no tensile strength. but which is not parallel or sub parallel to layering or planar anisotropy in the rock substance. May be open or closed.		60	(Note 2)	Und Stej
Sheared Zone (Not 3)	Zone of rock substance with roughly eparallel near planar, curved or undulating boundaries cut by closely spaced joints, sheared surfaces or other defects. Some of the defects are usually curved and intersect to divide the mass into lenticular or wedge shaped blocks.		35	W. Car	Irre Not influ ROI
Sheared Surface (Note 3)	A near planar, curved or undulating surface which is usually smooth, polished or slickensided.	I LE IN	40	No.	Slic
Crushed Seam (Note 3)	Seam with roughly parallel almost planar boundaries, composed of disoriented, usually angular fragments of the host rock substance which may be more weathered than the host rock. The seam has soil properties		50	13. N. N.	Smo
Infilled Seam	Seam of soil substance usually with distinct roughly parallel boundaries formed by the migration of soil into an open cavity or joint, infilled seams less than 1mm thick may be described as veneer or coating on joint surface.		65 BA	- ARA	Ver
Extremely Weathered Seam	Seam of soil substance, often with d gradational boundaries. Formad by weathering of the rock substance in place.	Seam	32 Turturt	C. C	
Notes on I 1. Usually dip.	Defects: borehole logs show the true dip of defects	and face sket	ches and sectior	ns the apparent	CO/
2. Parting	s and joints are not usually shown on the g	raphic log unle	ess considered s	ignificant.	Stai
Sheared zo	ones, sheared surfaces and crushed seams	s are faults in g	geological terms		
					Ver
					Ver

DEFECT SH	IAPE TERMS
Planar	The defect does not vary in orientation
Curved	The defect has a gradual change in orientation
Undulatin	g The defect has a wavy surface
Stepped	The defect has one or more well defined steps
Irregular	The defect has many sharp changes of orientation
Note: The influenced ROUGHNE	assessment of defect shape is partly by the scale of the observation. SS TERMS
Slickensid	ed Grooved or striated surface, usually polished
Polished	Shiny smooth surface
Smooth	Smooth to touch. Few or no surface irregularities
Rough	Many small surface irregularities (amplitude generally less than 1mm). Feels like fine to coarse sand paper.
Very Roug	Many large surface irregularities (amplitude generally more than 1mm). Feels like, or coarser than very coarse sand paper.
COATING	TERMS
Clean	No visible coating
Stained	No visible coating but surfaces are discoloured
Veneer	A visible coating of soil or mineral, too thin to measure; may be patchy
Veneer	A visible coating up to 1mm thick. Thicker soil material is usually described using appropriate defect terms (eg, infilled seam). Thicker rock strength material is usually described as a vein.

BH01

E	Ξn	gin	eer	in	g Log - E	Bor	ehc	le				Project N	No.:		TERRA192	258
	CI Pr He He	lient: roject ole Lc ole Pc	Nar ocati	ne: on: on:	PRM A Geotec No. 5 S 29254(rchit hina Seala 0.0 n	ectec I Inve ark Rd n E 61	ts and stigatio Callal 25380	Town on a Bay).8 m	Planne N MGA	ers \94 Zone 56	Commer Complete Logged F Checkec	nced: ed: By: I Bv:		22/07/2019 22/07/2019 XJ KG	9
	Di He	rill Mo ole Di	odel ame	and ter:	Mounting:	1.8	t exca	vator		-	Inclination: -90° Bearing:	RL Surfa Datum:	ace:	4.(AF)0 m ID Op	perator: GF
ſ			Ľ	Drill	ing Informat	tion			Soil Description						Observations	
	Method	Penetration	Support	Water	Samples Tests Remarks	Recovery	RL (m)	Depth (m)	Graphic Log	Group Symbol	Material Description Soil name, plasticity/grainsize cha colour, description of secondary o Minor components, i.e., some/trad soil substance observatio	racteristics, component. ce other ons	Moisture Condition	Consistency Relative Density	DCP NO OF BLOWS PER 100 mm	Structure and Additional Observations
							3.8	0.2-	X X X X X X X	ML	Sandy SILT: Low plasticity, pale brov trace of angular and sub rounded gra	<i>ı</i> n, fine sand, ıvel	D	L to MD		TOPSOIL
ight 1.00 2017-12-04					S1 0.50 m		4 3.6	0.4		СІ-СН	Silty CLAY: medium to high plasticity brown with red mottling, trace of root	', orange lets	D to M	F		ALLUVIAL SOIL
alnsight 1.00 lib 2017-12-04 Prj: Terralns							3.2 3.	0.6		CI-CH	Silty CLAY: medium to high plasticity red, with fine sand and trace of fine s gravel	, grey and ub rounded				RESIDUAL SOIL
el Lab and In Situ Tool - DGD Lib: Ten					S2 1.00 m		2.8 3.0			- - - - -			D to M	F to St		
> 29/07/2019 09:42 10.0.000 Datg					C2 150 m		2.6			CI	Sandy CLAY: medium plasticity, fine sand, grey with red mottling	to medium	D to M	St		RESIDUAL SOIL to EXTREMELY WEATHERED MATERIAL
5 FIELD FORMS.GPJ < <drawingfile< td=""><td></td><td></td><td></td><td></td><td>00 1.00111</td><td></td><td>.2 2.4</td><td>- 1.6 - - - - -</td><td></td><td></td><td>role reminated at 1.50 m Target</td><td></td><td></td><td></td><td></td><td></td></drawingfile<>					00 1.00111		.2 2.4	- 1.6 - - - - -			role reminated at 1.50 m Target					
I BOREHOLE 1 TERRA19125			etho	<u>d</u>	Per	netrat	ci <u>tio</u> n			Vater	Samples and Te	ests	<u></u> л	Noistu	re Condition	Consistency/Relative Density
3HT 1.00 LIB.GLB Log IS AU	Metnoa Penetration AS - Auger Screwing RR - Rock Roller No resistance WB- Washbore ranging to Graphic Log/Cc					e Log/Co	$\stackrel{-}{\simeq}$ Lev > Infl \triangleleft Pa \triangleleft Co ore Los ed (bet	vel (Date ow rtial Loss mplete L sping	U - Undisturbed Samp D - Disturbed Sample SPT - Standard Penetrat coss	ion Test		D M W	- Dry - Moist - Wet stic Limit < PL	VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard Fr - Friable VL - Very Loose L - Loose		
TERRAINSIG	C - Casing Graphic Log/Co.						indica	ates mai	eu (nato terial)	Jing	Soil Description Based on Unified Classification Sys	<u>ns</u> Soil stem			= PL < PL	MD - Medium Dense D - Dense VD - Very Dense

BH02

Er	ngin	ee	ring	g Log - I	Bor	eho	le				Project N	No.:		TERRA192	258
(F	Client: Proiect	t Nai	ne:	PRM A Geoteo	Archit china	ectec	ts and stigatio	Town on	Planne	ers	Comme Complet	nced: ted:		22/07/2019)
H	Hole L	ocat	on:	No. 5 \$	Seala	ark Rd	Callal	a Bay		04 7-11-50	Logged	By:		XJ	
	Drill M	odel	and	Mountina:	3.0 n 1.8	t exca	vator	5.0 m	IN IVIGA	Inclination: -90°	RL Surfa	асе:	4.(00 m	
	lole D	iame	eter:	5						Bearing:	Datum:		AH	ID Op	perator: GF
		l	Drilli	ng Informa	tion			Soil Description						Observations	
Method	Penetration	Support	Water	Samples Tests Remarks	mples ests Ja marks OO RL 관 (m		Depth (m)	Graphic Log	Group Symbol	Material Description Soil name, plasticity/grainsize cha colour, description of secondary c Minor components, i.e., some/trac soil substance observatio	racteristics, omponent. ce other ons	A Condition Consistency A C		DCP NO OF BLOWS PER 100 mm	Structure and Additional Observations
							-	× · · ×	SP	Clayey Silty SAND: fine to medium s with rootlets.	and, brown	D to M	L to MD		TOPSOIL
						3.8	0.2		ML-MH	Clayey SILT: low to medium plasticit brown with fine sand	y, orange	M to			ALLUVIAL SOIL
0.17-12-0 4				S1 0 50 m		3.6	0.4					W	Г		
2-04 mj: tetanagor i.vo.				01 0.00 m		3.4	0.6-		CI-CH	Sing CLAY: mealum to high plasticity red, trace of fine to medium sub rour	r, grey and Ided gravel				
						3.2	- - 0.8 - -	xx	-						
			:	S2 1.00 m		3.0	- 1.0 — - -		-			D to M	St		
						5.8	- 1.2 - -		-						
				S3 150 m		2.6	1.4		-						
						2.4	- 1.6	-		Target					
						2.2		- - - -							
	<u>∎</u> AS - Au RR - Re VB- W	l uger \$ ock R /ashb	<u>d</u> Screw coller ore	d <u>Penetration</u> crewing No resistance in oller ranging to refusal in					L Water Vel (Date low Intial Loss omplete L	Samples and Te Samples and Te U - Undisturbed Sample D - Disturbed Sample SPT - Standard Penetrat soss	ests ole ion Test	Δ	<i>loistu</i> D M W	re Condition - Dry - Moist - Wet	I Consistency/Relative Density VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard F - Friable
	с С	uppo - Ca	<u>rt</u> sing	Graphic Log/Con Core recovere indicates mate				ore Los ed (hat terial)	 Complete Loss <u>re Loss</u> d (hatching di (hatching Soil Description Based on Unified Classification Sv 			Plastic Limit vols and < PL			VL - Very Loose L - Loose MD - Medium Dense D - Dense VD - Very Dense

BH03

E	Ξn	gin	eei	ring	g Log - I	Bor	ehc	ole				Project No.			TERRA192	58	
	CI Pr He He	lient: roject ole Lo ole Po	Nar ocati	ne: on: on:	PRM / Geote No. 5 3 29261	Archit china Seala 9.0 n	ectec I Inve ark Rd n E 61	ts and stigatio Callal 25446	Town on a Bay 6.0 m	Planne N MGA	ers A94 Zone 56	Commence Completed: Logged By: Checked By	d: /:		22/07/2019 22/07/2019 XJ KG)	
-	Di	rill Mo	odel	and	Mounting:	1.8	it exca	avator		-	Inclination: -90° Bearing:	RL Surface	:	5.0 AH	0 m D Or	erator.	GE
ľ	Drilling Information								Soil Description					7 4 1	<u> </u>	(Observations
	Method	A Control of the second				Depth (m)	Graphic Log	Group Symbol	Material Description Soil name, plasticity/grainsize chara colour, description of secondary co Minor components, i.e., some/trace soil substance observation	cteristics, mponent. s other s	Condition	Relative Density	DCP NO OF BLOWS PER 100 mm	Ad	Structure and ditional Observations		
							œ			ML	Sandy SILT: Low plasticity, pale brown trace of angular and sub rounded grave	ı, fine sand, el D	to L VI N	_ to VID		TOPSOIL	
1.00 2017-12-04					S1 0.50 m		4.6	0.2		ML-MH	Clayey SILT: low to medium plasticity, brown with fine to medium sand	orange	м	F		ALLUVIAL	SOIL
rainsight 1.00 lib 2017-12-04 Prj: Terrainsight							4.2 4.4	0.6		СІ-СН	Silty CLAY: medium to high plasticity, red, with fine sand and trace of fine su gravel	grey and b rounded				RESIDUAL	SOIL
) Datgel Lab and In Situ Tool - DGD Lib: Ter					S2 1.00 m		3.8 4.0	1.0 — - - 1.2 —				D	to F M	⁼ to St			
29/07/2019 09:43 10.0.000							3.6	1.4		СІ-СН	Sandy CLAY: medium plasticity, fine to sand, grey with red mottling	o medium D	to M	St		RESIDUAL WEATHER	SOIL to EXTREMELY ED MATERIAL
FORMS.GPJ < <drawingfile>></drawingfile>					S3 1.50 m		3.4	- 1.6			Hole Terminated at 1.50 m Target						
EHOLE 1 TERRA19125 FIELD							3.2		- - - -								
00 LIB.GLB Log IS AU BORE	Method Penetration AS - Auger Screwing RR - Rock Roller No resistance ranging to WB- Washbore						t <u>ion</u> sistanc ing to usal	e :	Lev ▷ Lev ▷ Infl □ Pa ■ Co	Water Vel (Date low Intial Loss omplete L	B B C C C C C C C C C C C C C	ts ∋ n Test	Mo	D D M W	re Condition - Dry - Moist - Wet stic Limit	Consi V S F VS H	stency/Relative Density S - Very Soft - Soft - Firm St - Very Stiff - Hard - Friable
TERRAINSIGHT 1.	Support Graphic Log/Co C - Casing indicates mathematicates							Log/Co recover ates mat loss	ore Los ed (hate terial)	iss ching	<u>Classification Symbo</u> <u>Soil Description</u> Based on Unified S Classification Syste	<u>Is and</u> <u>s</u> coil em			< PL = PL < PL	VL L M D VI	 Very Loose Loose Medium Dense Dense Very Dense

BH04

																Tage TOTT
E	Ξn	gin	eel	ring	g Log - I	Boi	reho	ole				Project No.	.:		TERRA192	258
	Cl Pr Ho	lient: roject ole Lo	Nar Docati	ne: on:	PRM A Geote No. 5	Archii china Seala	tectec al Inve ark Rd	ts and stigatic Callal	Town on a Bay	Planne	ers	Commence Completed Logged By:	ed: :		22/07/2019 22/07/2019 XJ)
┢	Dr	rill Mo	ositio	on: and	Z9254 Mounting:	5.0 r 1.8	n E 61 Bt exca	avator	7.0 m	IN IVIGA	Inclination: -90°	RL Surface	e:	5.0	NG 10 m	
	Но	ole D	iame	eter:	-				Bearing: Datum: AHD					ID Op	perator: GF	
			1	Drilli	ng Informa	tion			Soil Description						Observations	
	Method Penetration Support Water			Water	Samples Tests Remarks	amples Fests Emarks Construction Constructio		Depth (m)	D O O O O O O O O O O O O O O O O O O O		Material Description Soil name, plasticity/grainsize char colour, description of secondary co Minor components, i.e., some/trac soil substance observation	ion e characteristics, ary component. e/trace other rvations		Consistency Relative Density NO OE BTON No Manuella No		Structure and Additional Observations
							4.8		× × × × × ×	SP	Silty SAND: fine to medium sand, pal	e brown	D	L to MD		TOPSOIL
al nsight 1.00 2017-12-04					S1 0.50 m		4.4 4.6			ML-MH	Clayey SILT: low to medium plasticity brown, with roots and fine to medium	, yellow sand	м	F		ALLUVIAL SOIL
erralnsight 1.00 lib 2017-12-04 Prj: Terr							4.2		× × ;	СІ-СН	Silty CLAY: medium to high plasticity, red, greyer with depth, with fine sand	grey and) to			RESIDUAL SOIL
I Lab and In Situ Tool - DGD Lib: T					S2 1.00 m		3.8 4.0						M	St		
29/07/2019 09:43 10.0.000 Datge							3.6			CI-CH	Siny CLAY: mealum to high plasticity, white with orange mottling	, greyisn	D to M	St		WEATHERED MATERIAL
.D FORMS.GPJ < <drawingfile>></drawingfile>					S3 1.50 m		3.4	- - 1.6 - -	-		Hole Terminated at 1.50 m Target					
OREHOLE 1 TERRA19125 FIEL							3.2	1.8— - - -								
1.00 LIB.GLB Log IS AU B	Method AS - Auger Screwing RR - Rock Roller WB - Washbore AG - 10 20 20 20 20 20 20 20 20 20 20 20 20 20					tion esistance ging to fusal Graphic	e		vvater vel (Date low rtial Loss omplete L ss	Samples and Tex U - Undisturbed Sample D - Disturbed Sample SPT - Standard Penetration oss	<u>sts</u> le on Test	M	D M W Pla	re Condition - Dry - Moist - Wet stic Limit	Consistency/Relative Density VS - Very Soft S - Soft F - Firm VSt - Very Stiff H - Hard Fr - Friable VL - Very Loose	
TERRAINSIGHT		<u>S</u> с	u ppo - Ca	<u>rt</u> sing	Graphic Log/Co			ed (hati terial)	ching	Classification Symbol Soil Description Based on Unified Classification Syst	bols and < PL ons = PL 1 Soil < PL stem			< PL = PL < PL	L - Loose MD - Medium Dense D - Dense VD - Very Dense	

Appendix E: ASS Laboratory Results

CERTIFICATE OF ANALYSIS

Work Order	: EW1903111	Page	: 1 of 5
Client	: TERRA INSIGHT	Laboratory	Environmental Division NSW South Coast
Contact	: MS KAREN GATES	Contact	: Aneta Prosaroski
Address	: PO BOX 414	Address	: 1/19 Ralph Black Dr, North Wollongong 2500
	UNANDERRA NSW 2526		4/13 Geary PI, North Nowra 2541
			Australia NSW Australia
Telephone	:	Telephone	: +61 2 4225 3125
Project	: 5 Sealark Rd Callala Bay - TERRA19258	Date Samples Received	: 22-Jul-2019 14:03
Order number	:	Date Analysis Commenced	: 26-Jul-2019
C-O-C number	:	Issue Date	: 26-Jul-2019 17:14
Sampler	: KAREN GATES		
Site	:		
Quote number	: EN/222		
No. of samples received	: 13		
No. of samples analysed	: 13		

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

* = This result is computed from individual analyte detections at or above the level of reporting

~ = Indicates an estimated value.

• ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 - Slight; 2 - Moderate; 3 - Strong; 4 - Extreme

• EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH01 0.5	BH01 1.0	BH01 1.5	BH02 0.5	BH02 1.0
	C	lient sampli	ng date / time	22-Jul-2019 00:00				
Compound	CAS Number	LOR	Unit	EW1903111-001	EW1903111-002	EW1903111-003	EW1903111-004	EW1903111-005
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
pH (F)		0.1	pH Unit	4.7	4.9	4.9	4.5	4.3
pH (Fox)		0.1	pH Unit	3.6	3.8	4.0	3.6	3.7
Reaction Rate		1	-	2	2	2	2	2

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH02 1.5	BH03 0.5	BH03 1.0	BH03 1.5	BH04 0.5
	CI	lient sampli	ng date / time	22-Jul-2019 00:00				
Compound	CAS Number	LOR	Unit	EW1903111-006	EW1903111-007	EW1903111-008	EW1903111-009	EW1903111-010
				Result	Result	Result	Result	Result
EA037: Ass Field Screening Analysis								
pH (F)		0.1	pH Unit	4.3	4.6	4.7	4.8	4.7
pH (Fox)		0.1	pH Unit	3.6	3.5	3.8	3.9	3.5
Reaction Rate		1	-	2	3	2	2	2

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	BH04 1.0	BH04 1.5	BH05 0-0.3	
	CI	ient samplii	ng date / time	22-Jul-2019 00:00	22-Jul-2019 00:00	22-Jul-2019 00:00	
Compound	CAS Number	LOR	Unit	EW1903111-011	EW1903111-012	EW1903111-013	
				Result	Result	Result	
EA037: Ass Field Screening Analysis							
pH (F)		0.1	pH Unit	4.5	4.7	4.2	
pH (Fox)		0.1	pH Unit	3.4	3.5	3.0	
Reaction Rate		1	-	2	2	3	